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EFFECT OF PF@SSURE ENVIRONMENT ON THE 

W I N G  OF VIBRATING STRUCTURES 

By David G. Stephens* and Maurice A. Scavullo" 
NASA Langley Research Center 

ABSTRACT 

An investigation was conducted to determine the mechanism of the air 

damping exhibited by rigid bodies of different shapes oscillating in a pressure 

environment. Circular and rectangular panels, as well as a sphere and cylinder, 

were attached to cantilever springs and the free decay of an induced oscilla- 

tion measured at pressure levels f r m  atmospheric to 4 x torr. Data are 
CC 

presented to show the effect of pressure, vibratory amplitude, shape, and sur- 

face area on the air damping of the models. Results indicate that the magnitude 

of the air damping may greatly exceed the structural damping of the system. The 

air damping associated with the panels is directly proportional to the pressure 

and amplitude which is indicative of dissipative loads proportional to the 

dynamic pressure. Furthermore, the panel damping was found to be independent 

of shape, and a 

exhibit viscous 

able theory. 

nonlinear function of the surface area. 

damping characteristics which are in good agreement with avail- 

The sphere and cylinder 

\ 

INTRODUCTION 

The vibratory response of a mechanical system is greatly influenced by the 

presence of damping. In most situations this damping results from the dissipa- 

tion of energy in such forms as internalhysteresis, interface or joint fric- 

tion, and external or air damping. This latter form of damping is highly 
* 
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dependent upon the magnitude of the pressure environment and, therefore, 

deserves particular attention in studying the response of systems designed to 

operate throughout a wide range of pressure. 

tests of a space vehicle are conducted under atmospheric pressure conditions, 

the damping level and consequently the response will be somewhat different than 

in the actual operating environment which involves reduced pressures. 

interpreting and extrapolating the results of such tests, one must understand 

and treat the effect of the pressure environment on the results. 

If, for example, the vibration 

Thus in 

The purpose of this paper is to present the results of an examination of 

the nature and magnitude of the air damping exhibited by rigid two- and three- 

dimensional shapes oscillating in a variable pressure environment. 

and rectangular panels, and a sphere and cylinder were attached to cantilever 

springs and the free decay of an induced oscillation was studied at pressure 

levels from atmospheric to 4 x torr. 

of pressure, vibratory amplitude, shape, and surface area on the air damping of 

the models. 

Circular 

Data are presented to show the effect 

APPARATUS AND PROCEDURE 

Apparatus 

The test program and subsequent data reduction were directed toward the 

isolation and examination of the effects of pressure, amplitude, shape, and 

area on the air damping of common shapes oscillating in a direction perpendicu- 

lar to their principal surface. 

deemed most expedient for examining the effects of these variables independently 

as well as in combination. 

shown in figure 1. 

A study of the free decay characteristics was 

The models used in the majority of the tests are 

The disks and rectangular panels with surface areas of 15, 

2 
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30, and 45 square inc,,es a s  well as  the sphere and cylinder having projected 

areas of 30 square inches were subjected t o  vibration a t  various pressure levels  

and amplitudes within a b e l l  jar vacuum system. 

The osci l la t ion w a s  provided by the cantilever spring system shown i n  f ig -  

ure 2. The beam, machined from a single piece of s ta in less  steel, had a re la-  

t i ve ly  large foot f o r  mounting t o  a r ig id  base p la te  and a T-section a t  the t i p  

f o r  attaching the models. 

adding small tuning masses t o  the T-section. 

spring-loaded solenoid. When energized, the slug imparted a s t a t i c  deflection 

t o  the beam and upon removal of the current the  slug w a s  re t racted by the 

spring. 

t o  the root of the beam. 

of maintaining pressure levels  between atmospheric and 4 X 

t iona l  tests were conducted a t  atmospheric pressure t o  be t t e r  define the depend- 

ency of damping on panel area. 

ranging from 12 t o  39 square inches were studied using the  beam system described 

above and, i n  addition, three larger  panels having areas of 71.3, 128, and 

220 square inches were studied using a larger beam a lso  having a tuned frequency 

In a l l  cases a frequency of 3.8 cps was maintained by 

The excitation was provided by the 

The ensuing osci l la t ion was sensed by means of a s t r a in  gage attached 

The system as shown was enclosed by a b e l l  jar capable 

to r r .  Addi- 

Nine rectangular panels having surface areas 

of 3.8 cps. 

Procedure 

The damping character is t ics  of the beam alone, tuned t o  3.8 cps, were 

studied i n i t i a l l y  followed by an examination of the damping of the  beam-model 

system. The procedure was essent ia l ly  the same i n  each case. The chamber, when 

used, w a s  pumped down t o  the  desired pressure level,  and fo r  a l l  but the lowest 

pressure (4  x 10-2 t o r r ) ,  

taken. The beam w a s  then 

the pump was shut down while the t e s t  points were 

deflected, released, and damping of the osci l la t ion 
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measured a t  various positions along the envelope. 

an electronic dampometer and specified i n  terms of the logarithmic decrement, 

The damping w a s  measured by 

1 *O 6 = - log - 
n Xn 

PRESENTATION AND DISCUSSION OF RESULTS 

General 

For purposes of t h i s  investigation, the logarithmic decrement i s  physically 

interpreted a s  the r a t i o  of the energy l o s t  per cycle t o  twice the t o t a l  energy, 

as discussed i n  reference 1. For the system under study, the measured decre- 

ments include losses due t o  the beam (hysteresis, jo in t  f r ic t ion ,  air damping, 

e tc . )  as well as t h e  air  damping of the model or  

The air damping a t t r ibu ted  t o  the attached model 6a i s  obtained by subtracting 

the beam damping 9, measured i n  a separate t e s t  under ident ical  conditions, 
2E 

from the t o t a l  measured decrement. 

the variables of in te res t .  

These decrements a re  presented i n  terms of 

I n  examining the results, the nature of the  r e s i s t i ve  or damping forces 

may be inferred by comparing the measured decrements t o  those calculated f o r  a 

single-degree-of-freedom system subjected t o  known loadings. I f ,  f o r  example, 

the forces are d i rec t ly  proportional t o  the  velocity (often referred t o  as 

viscous) the energy loss  per cycle 

pative force, or 

would equal the work done by the d i s s i -  
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where the velocity is very nearly 

2 = xow cos ut# 

if the system is lightly damped. 

result by twice the maximum energy of the cycle, or 

Integrating equation (4) and dividing the 

2 2  2l3 = Mxo IU 

yields a decrement 

( 5 )  

Thus in the case of viscous damping the decrement is independent of the ampli- 

tude and inversely proportional to the frequency. 

Likewise a panel subjected to forces proportional to velocity squared will 

have a decrement of the form 

which is a linear function of amplitude and independent of frequency. These 

two types of damping forces, viscous and velocity squared, are of particular 

interest because of their common occurrence in steady-state aerodynamics. 

Beam Damping 

The damping associated with the fundamental mode of oscillation of the 

cantilever beam, tuned to 3.8 cps, is presented in figure 3. These data served 

as a tare for obtaining the air damping from the measured total damping values. 

The damping factors, in terms of the logarithmic decrement 6, are shown as a 
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function of the pressure for several different tip amplitudes. 

tudes shown are the average tip displacement during the damping measurement. 

In this case, as well as those to follow, the data points represent an average 

of five or more measured values. 

The tip ampli- 

The total damping associated with the beam 

exhibits a near linear dependency on pressure in the range between atmospheric 

pressure and 100 torr. 

linear pressure relationship and approach values at 4 X lo-* torr which are 

most probably due to the internal hysteresis and joint friction. 

Below 100 torr the damping factors deviate from this 

Total Damping of Beam-Model System 

A typical sample of the data, as recorded, is shown in figure 4 to illus- 

trate the magnitude of the beam damping relative to the total damping. 

total damping recorded for the 30-square-inch rectangle mounted on the tip of 

the beam is presented as a function of pressure and amplitude. The amplitudes 

refer to the deflection of the center of the panel during the damping measure- 

ment and correspond to the beam tip deflections shown in figure 3.  

interesting to note the significant increase in the system damping with the 

addition of the panel. 

approximately five is noted in the high-pressure region. 

decreased, the values of damping converge to the values measured for the beam 

alone in the low-pressure region. 

introduced into the system with the addition of the panel and thus the addi- 

tional damping may be attributed to the air resistance. 

The 

It is 

For example, an increase in damping by a factor of 

A s  the pressure is 

This indicates that no extraneous damping is 

Damping of Two-Dimensional Models 

Effect of pressure.- The dependency of the air damping on the pressure 

environment is presented in figure 5. The air damping, obtained by subtracting 
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the beam w i n g  from the total damping at corresponding pressures and ampli- 

tudes, is shown for the 30-square-inch rectangle. The damping factor exhibits 

a linear dependency on the pressure, and thus density, throughout the range 

examined. A strong dependency of the damping on the amplitude is also noted, 

indicating the presence of a nonlinear damping phenomena. 

were noted in the other panels of 15, 30, and 45 square inches and thus these 

Identical trends 

data will be presented in a subsequent section on area and shape. 

Effect of amplitude.- The variation of damping with amplitude for the 

30-square-inch rectangle is presented in figure 6. The trends existing in this 

case are again representative of the results obtained for the other two- 

dimensional models. For the range of amplitude examined, the damping is a 

near linear function of panel deflection. 

the damping is apparently of the velocity squared type as previously discussed. 

Thus the resistance force is proportional to the dynamic pressure 

would be found in the case of a panel immersed in a steady stream of incom- 

Because of this linear dependency, 

pU2 as 

pressible fluid. 

not intersect the origin. 

It should be noted that an extension of the faired lines will 

It is probable that in the amplitude range below 

0.1 inch the forces become more viscous in nature and therefore the amplitude 

dependency or slope of the curve is reduced. 

Effect of shape.- The effects of panel shape were examined by comparing 

the damping factors associated with the rectangles and disks of 15, 30, and 

45 square inches. In figure 7 the decrements, measured over a wide range of 

pressure and amplitude, are presented as a function of the parameter px/M 

where p is the density of the air within the chamber, x is the amplitude of 

the panel, and M is the effective mass of the system located at the center of 

the panel. The synibols indicate the pressure levels at which the measurements 
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were taken. "he decrement is a linear function of the parameter px/M which 

is indicative of velocity squared damping (eq. 8). 

6 - - where k is the slope of the curve associated with each configuration. 

In comparing the results of the disk and rectangle, the slopes of the curve k 

For a particular area, 

- kpx 
M 

are seen to be independent of shape. 

Effect of area.- A s  shown in figure 7, the damping increases with panel 

area but at a much greater rate than one to one. 

relationship in de$ail, 9 rectangular panels having surface areas ranging from 

12 to 39 square inches were attached to the beam and studied at atmospheric 

pressure. In addition, three panels having surface areas of 71.3, 128, and 

To examine the damping-area 

220 square inches were studied using a larger beam to further extend the range 

of area. The results of this study are summarized in figure 8 where the param- 
6M 
PX 

eter --(=k) is shown for each area. The data of figure 7 are indicated by 

the squared symbols. 

being determined from the slope of the curve. 

A4/3 
Results indicate that 6 = 2 2 L ,  the exponent 4/3 

M 
It appears that within the range 

of variables covered in these tests, the above relationship can be used for 

obtaining the variation of air damping with changes in environment. 
a 

Limited tests were also conducted within the vacuum system using a beam 

having a tuned frequency of 21.2 cps and panels with surface areas ranging from 

12 to 45 square inches. 

ship observed in the low-frequency case, i.e., 6 = KpxA4/3 . For amplitudes 
Results of these tests verify the functional relation- 

M 
above 0.1 inch, a constant of proportionality K of 22 appears adequate for 

predicting the damping. Below 0.1 inch, the damping ceases to be a linear 

function of amplitude as was the case for the low-frequency data and cannot 

be adequately represented by the suggested empirical relationship. It may 

a lso  be noted that the damping values at these low amplitudes are substantially 

8 , 



smaller than those associated with the structural damping and it becomes 

increasingly difficult to accurately ascertain the true contributions of the 

surrounding air to the overall damping of the system. 

Damping of Three-Dimensional Models 

Sphere.- The problem of sphere performing pendulum oscillations of small 

amplitude in an incompressible viscous fluid has been examined theoretically 

by Lamb, reference 2. 

spherical surface yields a force component which is linearly proportional to 

and in opposition to the velocity as follows 

The derivation of the resultant force acting on the 

where 

X 

P mass density of fluid 

force in opposition to velocity 

a radius of sphere 

0 circular frequency of oscillations 

p = (0/2v)1/2 

V kinematic viscosity 

U velocity 

When substituted into equation ( 7 ) ,  

the resulting decrement is 



The val idi ty  of t h i s  relationship i s  shown i n  figure 9 where the damping of the  

sphere, measured a t  several amplitudes, i s  presented as a function of pressure. 

The data are  independent of amplitude, proportional t o  the square root of the 

density and are i n  good agreement with the theoret ical  curve. 

Cylinder.- A similar theoret ical  treatment fo r  a cylinder i s  presented in  

reference 3. 

vibrating normal t o  i t s  length i s  

The viscous damping force for  a cylinder of high length t o  radius 

1 where a and 2 are the radius and length of the cylinder, respectively, and 

the other symbols are as previously defined. 

cylinder i s  

The resul t ing decrement f o r  the  

6 = v(: + &) 
The theoretical  resu l t s  are shown i n  figure 10 along with the data measured f o r  

the cylinder. 

ment with the experimental results. A t  higher amplitudes, however, the decre- 

ment appears somewhat high possibly due t o  end effects  or  flow separation. 

In  the region of low amplitude, the theory i s  i n  excellent agree- 

CONC WSIONS 

Within the range of variables considered i n  t h i s  investigation the f o l -  

lowing conclusions are noted: 

(1) For systems having a re la t ive ly  large area t o  mass ra t io ,  the magnitude 

of the air damping may greatly exceed the damping at t r ibuted t o  a l l  other 

sources. Values of air  damping, an order of magnitude greater than the  struc- 

t u r a l  damping, were observed during these t e s t s .  

10 



. 
(2) The damping factors associated with vibrating panels exhibit a near 

linear dependency on pressure and vibratory amplitude, which indicates the 

presence of velocity squared damping or more specifically damping forces pro- 

portional to the dynamic pressure. 

(3) The damping factors associated with panels were found to be independent 

of shape and proportional to the product of the density, amplitude, and area 

raised to the 4/3 power, divided by the vibratory mass, i.e., 6 =  K ~ x A ~ / ~  
M 

(4) The damping factors associated with the sphere are essentially propor- 

tionalto the square root of the density, independent of vibratory amplitude, 

and in good agreement with available theory based on viscous damping forces. 

(5) At low amplitude the cylinder exhibits damping factors in excellent 

agreement with those predicted by viscous theory. 

damping exceeds theoretical predictions - possibly due to end effects or flow 
separation. 

At higher amplitudes the 

1. Thompson, William T. : Mechanical Vibrations. (Second Edition, Prentice- 

Hall, 1953.) Pages 55-59. 

2. W, Horace: Hy drodynamics. (Sixth Edition, Dover Publications, 1945. ) 

Page 644. 

3. Stokes, G. G.: Cambridge Philosophical Society Transactions, 9:  8-106 

(1851) 
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